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a b s t r a c t

For obtaining a complete model the diffusion tensor imaging (DTI) method is derived in a new linear
algebraic framework in order to include the effect of all of the magnetic field gradients on the MRI signal.
In the framework, the coefficient matrix of the estimation equations consists of the sum of three matrices
corresponding to diffusion gradients, imaging gradients and the cross-terms between them. The deriva-
tions demonstrate that there exists modeling incongruities originating from the choice of phase-encoding
gradient magnitude and the read-out gradient affecting the entirety of the signal sample points. These
reflect on the cross-terms and the imaging gradient coefficient matrix, revealing the DTI’s inadequacy
for the inclusion of imaging gradients. The linear algebraic framework mitigates the inadequacy by the
utilization of center-symmetric gradient schemes. The observations are verified by the experimental
results obtained from an isotropic phantom using several existing diffusion gradient schemes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The diffusion tensor imaging (DTI) is a widely used and impor-
tant protocol that is being utilized in research and clinic to assess
and diagnose the microstructural tissue changes due different con-
ditions such as multiple sclerosis [1,2], cancer [3], Alzheimer’s dis-
ease [4] and spinal cord injury [5]. DTI has been so well established
that it is now provided as a standard protocol with the clinical MR
scanners. Despite its utilization as a standard, its limited capability
in capturing and elucidating complicated structures has motivated
several researchers to develop sophisticated models such as the
diffusion spectrum imaging (DSI) [6], high angular resolution diffu-
sion-weighted imaging (HARDI) [7], the generalized DTI (GDTI) [8],
Diffusion Orientation Transform (DOT) [9] and Q-ball imaging [10]
to name a few from the comprehensive list provided in [11].

In this manuscript, the DTI model is derived in a linear algebraic
framework to better discern and address the problems and the lim-
itations of the technique. Specifically, in Section 2 the framework
to include the effect of the imaging gradients is presented. Com-
pared to the tensor algebraic approach [12,13], the linear algebraic
setup provides better capabilities in analyzing and rectifying the
barriers in the DTI model (see Section 5). For example, it makes
it possible to define a sample-independent norm in [14]. The norm
is utilized to pose an optimization problem, which is then solved to
obtain better performing diffusion gradient schemes [14].

The MR-DTI methodology is based on the work of Stejskal and
Tanner [15] for the pulsed gradients spin echo (PGSE) NMR exper-
ll rights reserved.
iment. In the NMR case, the calculations in [15] show that the
phase incoherence caused by the scalar diffusion coefficient is
quantified by measuring the decrease in the signal peak value.
The decrease is a function of the diffusion gradient pair’s magni-
tude characterized by the so called (scalar) b-value.

The NMR formulations of [15] are translated directly to the MRI
setup in [12]. There, the quantities of interest are no more scalars.
The diffusion phenomenon is characterized by a rank two tensor in
three dimensions, represented as a matrix D. For a given
diffusion encoding gradient pair, the coefficient of D in the DTI
equations is another matrix, the b-matrix, that multiplies D ele-
ment by element [12]:

b : D:

In [12,13] the measurements made with different b-matrices are
utilized for estimating D via a set of linear equations.

Whether seen as tensors or matrices, mathematically both
objects in b:D are elements of a vector space and the element by
element multiplication is in fact their inner product. Therefore, it
is beneficial to utilize a minimalist linear algebraic representation
to facilitate the application of the existing mathematical methods
(e.g. utilization of the appropriate norms and the corresponding
matrix norms for the design of new gradient schemes [14]). With-
out including the imaging gradients, this setup is first exposed in
[16] where D is appropriately written as a vector along with the
set of corresponding linear equations. Each row of the coefficient
matrix of these equations is a nonlinear function of one diffusion
encoding gradient, which is now a three dimensional vector rather
than a scalar. Basically, in [16] the special tensor product b:D is
appropriately replaced by the product of a row vector – instead
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Fig. 1. The pulsed gradient spin echo pulse sequence and the definition of the variables used in the calculations. RO is for read-out, PE for phase-encode, SS is the slice-select
gradient with RF indicating radio frequency, ACQ stands for the acquisition and RW for rewind. The diagram is representative and is not to the scale. The offsets between the
pulses are usually minimized by the MRI console. This minimum delay depends on the specifications of the magnetic field gradient hardware. The strength of the imaging
gradients is also calculated by the MRI console computer to adjust for the imaging parameters e.g. the field of view.
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of the b-matrix – and the vector presentation of D, and the whole
DTI experiment is characterized by the coefficient matrix formed
by these row vectors.

A direct outcome of the vector space framework was the
description of a set of necessary conditions for the choice of the dif-
fusion gradient vectors that guarantee that the coefficient matrix
has full rank [17]. Otherwise, the DTI experiment will collect
redundant data leading to a set of underdetermined equations. It
is shown in [18] that these conditions are also valid for the nonlin-
ear estimation. In contrast, the tensor algebraic setup [19] fails to
provide a complete description these requirements.

Physically, all of the gradients affect the signal so the imaging
gradients must be included in the calculations. The rigorous der-
ivations of [15] are obtained for PGSE without any ‘extra’ gradi-
ents, such as the imaging ones of MRI. Although it is common
practice to ignore the imaging gradients in the equations, for
the experiments where the field of view is small, such as in the
case of animal scanners, these gradients have significantly high
magnitudes.

The imaging gradients were incorporated in [13] into the tensor
algebraic approach. In Sections 3.2 and 3.3, the same task is accom-
Fig. 2. The calculation of the time course for the entries of VC corresponding to the read
crusher gradients are not included and the gradient offsets are exagerated for better vis
obtain l that in turn is integrated to obtain VD,VC,VI. The figures also show that by movi
diffusion effect since lD is zero before the echo time. However, this strategy might cre
sequence or a completely different one, the definition of h in Eq. (2) will change and accor
model should be applicable to any pulse sequence that can incorporate diffusion gradients
the model.
plished in a much less tedious fashion with the linear algebraic
framework. In doing so, some modeling ambiguities are quickly
unveiled. For example, each k-space line in a diffusion-weighted
acquisition corresponds to one Stejskal–Tanner experiment [15]
run with the addition of the imaging gradients. But the magnitude
of the phase-encoding gradient changes at each k-space line. It is
therefore not clear which value of the phase-encoding gradient
to use in the DTI estimation equations since the intensity at each
pixel of the DT images is obtained from the entirety of the k-space
lines.

At a more fundamental level, in the Stejskal–Tanner experiment
the scalar diffusion coefficient can be obtained by looking at a sin-
gle point (the peak value of the signal). But for the DTI experi-
ments, all of the data points collected during the analog to digital
conversion acquisition (ACQ) periods contribute to the entirety of
each image. With the read-out gradient activated and encoding
the spin motion for all of the data points, all points contribute to
the estimation of D. In addition, the imaging gradients do not nec-
essarily have a null moment and their integrals do not form a pla-
teau as in Fig. 2. Instead they possess different values at each
sampling point during the ACQ period as in Fig. 3.
-out gradient for the PGSE pulse sequence of Fig. 1. The values are scaled and the
ualization. The p-pulse occurs at TE

2 : The scalar function of time, b, is integrated to
ng the read-out rewind gradient just before the read-out acquisition eliminates the
ate artifacts, e.g. stimulated echoes, in the images. For any variation of the pulse

dingly these graphs will be different. In any event, as any valid model should, the DTI
. Therefore the usage of the current sequence of Fig. 1 is a valid procedure for testing



Fig. 3. The calculation of the time course for the phase-encoding and read-out gradients for the PGSE pulse sequence of Fig. 1. Notice that the function corresponding to the
phase-encoding does not plateau around TE. This creates a possible range of values to be used in the coefficient matrices, since all of the points during the acquisition period
participate in image formation. The similar problem is also present for the read-out gradient for which TE is an inflection point.
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Nevertheless, keeping the phase-encoding gradient value as an
unknown variable and using the single signal value at the echo
time, in Section 3 the coefficient matrix of the DTI estimation equa-
tions is analytically derived as the sum of three matrices corre-
sponding to diffusion, imaging gradients and the cross-terms
between them. Although the coefficient matrix for the diffusion
gradients is numerically computable, due to the unclear choice of
the values mentioned above, the same is not possible for the imag-
ing and cross-term matrices. The following is concluded:

Despite the necessity to include the effect of the imaging gradi-
ents for a complete model, the DTI method is not adequate for
such an inclusion.

In Section 2, the proton density related image is replaced in the
estimation equations by the spin-echo image without the diffusion
gradients. It is demonstrated that this theoretically eliminates the
imaging gradient coefficient matrix from the equations providing a
partial resolution for the issues described above. In Section 5, the
linear algebraic framework offers a remedy for the cross-terms ma-
trix. Regardless of the values of the imaging gradients used in the
systems of equations, when the diffusion gradients are sign re-
verted (center-symmetric) the matrix corresponding to the cross-
terms reverts its sign while the other matrices remain the same.
Therefore, by conducting a DTI experiment with two sets of diffu-
sion gradient vectors that are sign reverted copies of each other,
the cross-terms matrix can be eliminated, at least in theory, from
the estimation process with the cost of losing half of the informa-
tion provided by the measurements. This method is called ‘No
Cross Terms’: NoCroT. The center-symmetric strategy has been
investigated in earlier diffusion-weighted imaging studies [20–
22] and experimental results from Icosahedral DTI scheme have
been reported [23] but it has never been theoretically and experi-
mentally analyzed for DTI before this work. The analysis of the No-
CroT method at the end of the Section 5 reveals that it is equivalent
to least squares estimation by completely neglecting the imaging
gradients.

The general modeling incongruity is demonstrated using the
isotropic sample of Section 6.1 with the results presented in Sec-
tion 6.2. The experiments were carried with center-symmetric ver-
sions of existing diffusion gradient schemes [24,25] with the
purpose of investigating the variation of the estimation results be-
tween the diffusion gradient schemes and different coefficient
matrices. The same data from each scheme were used to compute
the diffusion quadratic forms by two levels of image gradient
incorporation: ‘all gradients’ and NoCroT. The results in Section 7
show that the computations including all of the gradients yield
more inaccurate results than the ones obtained by excluding the
imaging gradients, demonstrating experimentally the inadequacies
in incorporating the imaging gradients into the DTI model.
In conclusion, while the analytical expressions derived in this
manuscript constitute a reference for future investigations, the
theoretical results build the foundation for defining optimization
problems [14] to address the incongruities with more sophisti-
cated tools as well as to improve the performance of DTI modality.

2. Estimation equations

2.1. Coefficient matrix V

Stejskal and Tanner’s incorporation of the effect of diffusion in
NMR pulsed gradient spin echo (PGSE) experiments starting from
Fick’s equation results in the solution of the modified Bloch equa-
tion in [15]. The solution has been generalized to MR-DTI experi-
ments in [12,13]. The translation of NMR model [15] to MRI in
[12, Eq. (3)] is written here with an important note:

SðG; tÞ ¼ Spexp �c2
Z t

0
hðG; fÞD½hðG; fÞ�T df

� �
; ð1Þ

where G(�) = [Gx(�)Gy(�)Gz(�)] denotes the time course of the mag-
netic field gradient vector, c is the gyromagnetic ratio, S denotes
the signal intensity at each pixel. Most importantly, in this equation,
Sp is different than S0 of [12, Eq. (3)] which is the reference image
obtained without diffusion gradients (see Eq. (9) below). The true
nature of Sp is related to the proton density and its exact description
is beyond the scope of this manuscript. The initial time, 0, is taken
in this work as the time ‘‘immediately following the 90� pulse” [26].
In Fig. 1 of [13] and Fig. 2 of [27], it is shown as the time when the
90� pulse reaches its peak. The time t is chosen to be TE, the echo
time. The analytic form of the vector valued function h depends
on the pulse sequence. Specifically, the one given here is for the
PGSE imaging experiment with the pulse sequence diagram shown
in Fig. 1 and it is derived by incorporating the unit step function for
the sign change created by the p-pulse:

hðG; fÞ ¼
Z f

0
GðnÞdn� 2uðf� sÞ

Z s

0
GðnÞdn ð2Þ

where s is the time of the p-pulse and u(�) denotes the unit step
function. It is important to note that calculation of h involves the
time course of all gradients [12,19,28] not just the diffusion sensi-
tizing ones.

The diffusion tensor in Eq. (1) is of rank two and both of the
arguments it operates on are always equal. By the fact that for
any n � n matrix D and any x 2 Rn the following holds:

2xT Dx ¼ xTðDþ DTÞx; ð3Þ

it is concluded that MR-DTI can only measure the symmetric part of
the diffusion tensor which, by definition, is a quadratic form repre-
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sented by a symmetric matrix. The subset of symmetric n � n matri-
ces, SM(n), is a subspace (of dimension n(n + 1)/2) of the vector
space of n � n matrices. For n = 3 the image of the standard basis
of R6 under the map

d ¼ ½d1 � � � d6 �T#D ¼
d1 d4 d6

d4 d2 d5

d6 d5 d3

264
375 ð4Þ

is a basis for SM(3). By treating SM(3) as a six dimensional vector
(sub)space, Eq. (1) is written as a set of linear equations between
the m diffusion-weighted measurements and d. This is achieved
by letting

hið�Þ ¼ ½hixð�Þ hiyð�Þ hizð�Þ �; i ¼ 1; . . . ;m

be R3 valued functions, square integrable over the fixed finite inter-
val [0, t] and by defining a linear map from R6 to Rm by

d#

Z t

0
½ h1DhT

1 � � � hmDhT
m
�T df; ð5Þ

which has an m � 6 matrix representation using the basis defined
by Eq. (4):

V ¼
Z t

0

h2
1x h2

1y h2
1z 2h1xh1y 2h1yh1z 2h1xh1z

..

. ..
. ..

. ..
. ..

. ..
.

h2
mx h2

my h2
mz 2hmxhmy 2hmyhmz 2hmxhmz

26664
37775df: ð6Þ

With Gi(�) as the time course of the total magnetic field gradient
vector (i.e. including imaging and diffusion) at the ith measurement
and with h defined in Eq. (2), let

hiðfÞ ¼ hðGi; fÞ:

Using this definition, let vi denote the ith row of V in Eq. (6). Then

v id ¼
Z t

0
hðGi; fÞD½hðGi; fÞ�T df: ð7Þ

Now, Eq. (1) is conveniently written for the ith acquisition by
changing the arguments of S as:

Sðv idÞ¼
: Sp expð�c2v idÞ ¼ Si: ð8Þ

Therefore S0 of [12, Eq. (3)] will be obtained by turning off the dif-
fusion gradients resulting in a vector vI that only encompasses the
imaging gradients for the calculation of Eq. (7):

S0 ¼ Sp expð�c2v IdÞ: ð9Þ

Since Sp is not directly available, the usual approach is to replace it
by writing Eq. (8) as:

Sðv idÞ¼
: S0 expð�c2ðv i � v IÞdÞ ¼ Si: ð10Þ

Applying the logarithm to this equation yields:

c2ðv i � v IÞd ¼ � ln
Si

S0

� �
¼ ln S0 � ln Si; ð11Þ

where the substraction on the right is preferred to reduce the prop-
agation of errors in numerical calculations. Finally, by defining

p ¼ ½ lnðS0Þ � lnðS1Þ; . . . ; lnðS0Þ � lnðSmÞ �T ð12Þ

the linear equations for the estimation of the diffusion matrix can
be written as

c2ðV � VIÞd ¼ c2VDCd ¼ p ð13Þ

where VI is the m � 6 matrix with rows equal to vI (see Eq. (28)) rep-
resenting the imaging gradients and VDC, defined in Section 3, rep-
resents the diffusion sensitizing gradients and the cross-terms.
In practice, Si is replaced in Eq. (11) by bSi, the value obtained
from the experiments, to be able to estimate d from Eq. (13). Since
VDC is an m � 6 matrix, given the measurements p 2 Rm, for Eq.
(13) to have a solution m must be at least equal to 6. In general,
more than six measurements (m > 6) are made to alleviate the per-
turbations and the pseudoinverse matrix is used to obtain the least
squares solution of Eq. (13):

c2VT
DCVDCd ¼ VT

DCp: ð14Þ

In [16,25] VDC is replaced in Eq. (14) with VD, the matrix correspond-
ing to the diffusion gradients only, computed in Section 3.1. When-
ever using Eq. (14) is not deemed to be satisfactory due to different
kind of perturbances, nonlinear estimation methods minimizing the
least squares error for Eq. (10) shown in Eq. (39) are preferred [29].

It is crucial to note that Eq. (13) or Eq. (14) pose no restrictions
on the definiteness of the diffusion quadratic form D. However,
according to Fick’s first equation [30, p. 2] D must be positive def-
inite. In other words, it is possible to calculate a D with a negative
eigenvalue but this is physically meaningless. Therefore, it is
impossible to design an experiment which would make the inte-
gral in Eq. (7) vanish in order to measure Sp directly from Eq. (8)
because D > 0 implies that the integral will only be zero for h = 0
(i.e. h(f) = 0 for all f 2 [0,t]). That means an imaging experiment
without any gradients has to be realized!

Sp can be estimated by adding another (minimum 7th)
acquisition:

v1 �1

..

. ..
.

v7 �1

2664
3775 d

lnðSpÞ
c2

" #
¼ ½V � 1�

d
lnðSpÞ

c2

" #
¼ � 1

c2

lnðS1Þ
..
.

lnðS7Þ

2664
3775: ð15Þ

The augmented coefficient matrix uses V of Eq. (6) rather than VD

that is used by Papadakis et al. [31] to include S0 as a variable in
the method called total fitting:

½VD � 1�
d

lnðS0Þ
c2

" #
¼ � 1

c2

lnðS1Þ
..
.

lnðS7Þ

2664
3775: ð16Þ

In this equation, VD would be replaced by VDC should the cross-
terms be included for a complete model.
3. Components of V

The matrix V defined in Eq. (6) is a nonlinear function of the
magnetic field gradients. In order to distinguish the contributions
of the diffusion and imaging gradients in V, G can be written as a
sum of its diffusion and imaging parts G = GD + GI since their time
axis supports (gradient-on times) do not intersect. However, when
the gradients are integrated to obtain h using Eq. (2), the supports
intersect. So, in the calculation of V, the diffusion and imaging gra-
dients are not separable (see Fig. 2). However, the definition of h
given in Eq. (2) implies that h(GD + GI) = h(GD) + h(GI). Therefore V
can be separated into three parts by expanding Eq. (6):

V ¼ VD þ VI þ VC ð17Þ

with the detailed definition of the matrices given in Eq. (A.1). VD and
VI represent the effect of diffusion gradients and imaging gradients
respectively, and VC describes the cross-terms between the two
types of gradients.

In the ideal case, where the gradients have rectangular shapes
(rather than trapezoids), the imaging and diffusion gradients are
factorized as the product of a scalar function of time, b�(n), which
describes the switching times and duration of the gradients, and
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a vector (not necessarily of unit norm for the diffusion gradients)
that defines the strength of different channels:

G�ðnÞ ¼ b�ðnÞg� ¼ b�ðnÞ½ g�x g�y g�z �: ð18Þ

The asterisk can be any of the labels ro,pe,ss (read-out, phase-en-
code, slice-select) for imaging or D for diffusion gradients. Define

l�ðfÞ ¼
Z f

0
b�ðnÞdn� 2uðf� sÞ

Z s

0
b�ðnÞdn: ð19Þ

to obtain from Eq. (2)

hðG�; fÞ ¼ l�ðfÞg� ¼ l�ðfÞ½ g�x g�y g�z �: ð20Þ

This formulation is well suitable for defining optimization problems
with the objective of decoupling the imaging and diffusion gradi-
ents [14]. Even if the gradient functions are not boxcars, the factor-
ization given in Eq. (18) will still be a good approximation for
gradient amplifiers with short rise times. The calculations for trap-
ezoidal gradients are straightforward but tedious so the rectangular
gradients will be adapted for the remainder of the manuscript.

3.1. Calculation of VD

For ease of notation, denote giD, the ith diffusion gradient vector
by gi. The product of the separated timing and vector component is
written as:

GiDðnÞ ¼ bDðnÞgi:

Using Eqs. (19) and (20), VD in Eq. (A.1) can also be factored into a
scalar time function and a matrix, which is a function of the diffu-
sion gradient vectors, as follows. Define a nonlinear function w that
maps the vector gi ¼ ½ gix giy giz � in R3 to a vector in R6 :

wðgiÞ ¼ ½ g2
ix g2

iy g2
iz 2gixgiy 2giygiz 2gixgiz �: ð21Þ

Let g = (g1,. . .,gm) denote the ordered set of the diffusion gradient
vectors. The expression for VD in Eq. (A.1) and the definition Eq.
(2) give

VD ¼ btVg ð22Þ

where Vg on the right-hand side is the nonlinear map

Rm�3 ! Rm�6

g ¼

g1x g1y g1z

..

. ..
. ..

.

gmx gmy gmz

2664
3775#Vg ¼

wðg1Þ
..
.

wðgmÞ

2664
3775 ð23Þ

or more explicitly Vg is the m � 6 matrix

g2
1x g2

1y g2
1z 2g1xg1y 2g1yg1z 2g1xg1z

..

. ..
. ..

. ..
. ..

. ..
.

g2
mx g2

my g2
mz 2gmxgmy 2gmygmz 2gmxgmz

2664
3775 ð24Þ

and bt is calculated using Eqs. (19) and (20):

bt ¼
Z t

0

Z f

0
bDðnÞdn� 2uðf� sÞ

Z s

0
bDðnÞdn

� �2

df

¼
Z t

0
l2

DðfÞdf: ð25Þ

For example, the scalar factor of rectangular diffusion gradient
pulses is bt ¼ d2ðD� 1

3 dÞ and for trapezoidal pulses it is
d2ðD� 1

3 dÞ � 1
6 dt2

rise þ 1
30 t3

rise where d is the length of the pulses, D is
the time between them as shown in Fig. 1, and trise is the time for
the gradients to reach a specified value. Since ðbt � d2ðD� 1
3 dÞÞ �

Oðt2
riseÞ, if trise� d, trapezoidal gradients can be approximated by

rectangular functions of time.
Note that bt is different than the usual definition of b-value gi-

ven in the literature. It does not include the gradient strengths and
c2. In this manner, the design of DTI experiments based on the dif-
fusion encoding gradient schemes is turned into a geometric
search problem as in the formulation of the optimization problems
in [14].

3.2. Calculation of VI

Although VI is theoretically eliminated from the estimation in
Eq. (13), its derivation below plays an essential role for the deriva-
tion of the cross-terms matrix VC as well exposing some of the dif-
ficulties with the DTI model. Moreover, VI appears in Eq. (15) for
the total fitting of Sp.

During an experiment, once the slice thickness, position and
orientation are selected, they do not change. This implies that
the imaging part of V, VI, has all of its rows equal to each other
in Eq. (A.1). The time dependent imaging gradient vector GI can
be written as a linear combination of three unit vectors, corre-
sponding to read-out, phase-encode and slice-select directions:

GIðnÞ ¼ broðnÞgro þ bpeðnÞgpe þ bssðnÞgss

¼ ½broðnÞ bpeðnÞ bssðnÞ �
gro;x gro;y gro;z

gpe;x gpe;y gpe;z

gss;x gss;y gss;z

264
375: ð26Þ

In this case, the vector’s coefficients, which are scalar functions of
time, incorporate the strength of the gradients. By the linearity of
h, Eqs. (19, 20, 26) the following is obtained:

hðGI; fÞ ¼ lroðfÞgro þ lpeðfÞgpe þ lssðfÞgss

¼ ½lroðfÞ lpeðfÞ lssðfÞ �
gro;x gro;y gro;z

gpe;x gpe;y gpe;z

gss;x gss;y gss;z

264
375: ð27Þ

The matrix on the right-hand side is an orthogonal matrix because
the imaging directions are orthogonal in MRI. If the coordinate
frame is chosen to be the imaging frame, the matrix on the right-
hand side of Eqs. (26) and (27) becomes the identity matrix. The cal-
culation of VI, which only requires one row, vI, is accomplished by
integrating wð½lro lpe lss �Þ:

v I ¼
Z t

0
½l2

ro l2
pe l2

ss 2lrolpe 2lpelss 2lrolss �df: ð28Þ

If the imaging gradients are not aligned with the coordinate frame,
the calculations are lengthy but straightforward. For instance the
first entry of the row vector is calculated as:Z t

0
h2

x ðGIÞdf ¼
Z t

0
ðlrogro;x þ lpegpe;x þ lssgss;xÞ

2df:
3.3. Calculation of VC

VC can be computed in a straightforward manner using the
functions given in the previous sections, especially Eq. (27). The
matrix consists purely of the cross-terms of the imaging and diffu-
sion parts of h. For example, when the imaging gradients are
aligned with the coordinate axes, the calculation of the ith row re-
quires the following (see Eq. (A.1)):



1y þ lssg1zÞ ðlssg1x þ lrog1zÞ

..

. ..
.

y þ lssgmzÞ ðlssgmx þ lrogmzÞ

3775df: ð30Þ
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Z t

0
hkðGiDÞhlðGIÞdf ¼

Z t

0
liDðfÞllðfÞdf

� �
gikgl

where k is any of the labels x,y,z; l is any of x,y, z on the left-hand
side and is the corresponding label (i.e. one of ro,pe,ss) on the
right-hand side. The calculations result in:

VC ¼ 2
Z t

0

l1Dlrog1xgro;x � � � l1Dðlssg1xgss;z þ lrog1zgro;xÞ

..

. ..
.

lmDlrogmxgro;x � � � lmDðlssgmxgss;z þ lrogmzgro;xÞ

2664
3775df:

ð29Þ

Under boxcar conditions, as in Eq. (22), all liD ’s are the same for all
of the acquisitions: lD ¼

: liD and the matrix can be calculated as a
function of diffusion gradients, VC(g):

VCðgÞ ¼ 2
Z t

0
lD

lrog1x lpeg1y lssg1z ðlpeg1x þ lrog1yÞ ðlpeg

..

. ..
. ..

. ..
.

lrogmx lpegmy lssgmz ðlpegmx þ lrogmyÞ ðlpegm

2664
When the image orientations are not aligned with the coordinate
frame, similar to the case of VI, tedious but routine computations
must be carried out. For example, (1,1) entry of VC can be calculated
as

2
Z t

0
hxðG1DÞhxðGIÞdf ¼ 2

Z t

0
l1Dg1xðlrogro;x þ lpegpe;x

þ lssgss;xÞdf: ð31Þ
4. Deficiencies of the DT-MRI model

Although the analytical derivations are carried out without any
hurdles, a significant problem arises when the numerical values of
VI (specifically for the total fitting in Eq. (15)) and VC need to be cal-
culated. For each image, the read-out and the slice-select gradient
magnitudes are constant but the strength of the phase-encoding
gradient changes at each k-space line. This implies that there is a
range of gradient strength choices to use in bpe for the calculation
of lpe, h, VI and VC. In [13], bpe is chosen to be 0, corresponding to
the center of k-space. This specific choice is equivalent to com-
pletely neglecting the effect of the phase-encoding gradients, defy-
ing the purpose of obtaining a complete model.

Moreover, in Eq. (1) the estimation of D is based on the intensity
values at each pixel that originate from the entirety of the k-space
data, not from a single point. During the data collection, the read-
out gradient is active. The gradient makes the diffusion of the spins
affect all of the k-space points. Since the phase-encode and read-
out gradient integrals do not possess null moments, their integrals,R TE

0 l2
rodf and

R TE
0 l2

pedf; do not form a plateau around TE as shown in
Fig. 3. Therefore the diffusion effect on the k-space points is not
uniform and at a fundamental level the DTI model fails to take into
account this property.
5. Center-symmetric diffusion gradients: NoCroT and CroTO

The modeling ambiguities described in Section 4 affect VI and
VC. VI is theoretically eliminated by replacing Sp in Eq. (1) with S0.
This section presents a theoretical way of eliminating the necessity
to compute VC.

The cross-terms can be completely avoided by using the proper-
ties of VC and a specific organization of gradients. Eqs. (24) and (29)
show that when the sign of the diffusion gradients is changed, VD

remains the same, because Vg = V(�g) while the cross-terms matrix
changes sign, VC(�g) = �VC(g). Experiments performed with center-
symmetric diffusion gradients, i.e. with the gradient set
ðg;�gÞ ¼ ðg1; . . . ; gm

2
;�g1; . . . ;�gm

2
Þ result in:

c2 btVg þ VCðgÞ

btV ð�gÞ þ VCð�gÞ

" #
d ¼

p1

p2

� �
: ð32Þ

The direct approach would be to use least squares estimation by
solving the following equation using the pseudoinverse:

2c2 VT
DVD þ VT

CVC

� �
d ¼ VT

Dðp1 þ p2Þ þ VT
Cðp1 � p2Þ: ð33Þ

On the other hand, the sum and the difference of Eq. (32) yield
2c2btVgd ¼

2 ln S0 � ln S1 � ln S m
2þ1ð Þ

..

.

2 ln S0 � ln Sm
2
� ln Sm

26664
37775 ¼ p1 þ p2 ðNoCroTÞ

ð34Þ

2c2VCðgÞd ¼

� ln S1 þ ln S m
2þ1ð Þ

..

.

� ln Sm
2
þ ln Sm

26664
37775 ¼ p1 � p2 ðCroTOÞ: ð35Þ

In this manner Eq. (33) is partitioned according to Eqs. (34) and
(35). VC does not appear in Eq. (34), hence the name ‘No Cross
Terms’: NoCroT; in contrast to Eq. (35) which consists of ‘Cross
Terms Only’: CroTO.

Under ideal experimental conditions, assuming that the correct
choice of the phase-encoding gradient to use for VC (and VI) is
known, Eq. (32), Eq. (33), Eq. (34) and Eq. (35) give rise to the same
solution for d. NoCroT has the advantage of solving the estimation
problem without calculating VC.

This approach does require, however, using a minimum number
of 12 measurements. Since the center-symmetric gradient pairs
point in the same direction, the first necessary condition given in
[17] for VD to have full rank is violated. The correct way to choose
the center-symmetric diffusion gradients is to first select six
vectors that will ensure the full rank condition on Vg [17]. More
gradients can be added after this requirement is fulfilled. The cen-
ter-symmetric counterparts are included afterwards to obtain
V(g,�g) with full rank. This implies that the minimum number of No-
CroT diffusion gradients is 12.

The solution of NoCroT, Eq. (34), is given by the use of pseudo-
inverse in:

c2VT
DVDd ¼ 1

2
VT

Dðp1 þ p2Þ ð36Þ

which shows that the NoCroT method is not equivalent to the com-
plete model of Eq. (33), since half of the equations, i.e. Eq. (35), is
discarded from the estimation. This is the cost paid for the advan-
tage offered by NoCroT.

Moreover, Eq. (36) is also the least squares solution of the fol-
lowing set of inconsistent equations where the imaging gradients
are completely ignored:
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c2 VD

VD

� �
d ¼

p1

p2

� �
: ð37Þ

This is shown by multiplying Eq. (37) from the left with ½VT
DVT

D� to
obtain the pseudoinverse matrix, which results exactly in Eq. (36).
Therefore when center-symmetric gradient schemes are used, No-
CroT is equivalent to completely neglecting the imaging gradients
from the equations.

When the gradient schemes are not center-symmetric, the valid
equation for a complete DTI model is Eq. (13) and there is no jus-
tification such as the one provided by NoCroT for neglecting the
cross-terms.

In the special case where the minimum number of 6 gradient
pairs (m = 12) are used VD is a square matrix in Eq. (34) and Eq.
(36). The NoCroT equation is solved by matrix inversion and there-
fore d is perfectly fitted to 1

2 ðp1 þ p2Þ.
The central assumption behind the NoCroT strategy is that

when the sign of the diffusion gradients is changed, the matrix
VC will change sign regardless of how the imaging gradients are
modeled and how they appear in the equations. Practically, for
the method to work properly, the gradient system must be able
to invert the diffusion gradients exactly.
6. Description of the experiments and the analysis

First and foremost, the estimation procedures must work prop-
erly for the simplest case of diffusion with known characteristics:
an isotropic sample. For that reason, a polypropylene centrifuge
tube by FisherBrand (Cat. No. 05-539-6) filled with tap water at
room temperature, with an inner diameter at the slice of 2.5 cm
was chosen as the phantom.

6.1. Experimental setup

The experiments were carried out on a 4.7 Tesla MR scanner
(Varian NMR Systems, Palo Alto, CA, USA) with a gradient system
of bore size of 15 cm, maximum gradient strength of 45 gauss/
cm and rise time of 0.2 ms using a quadrature birdcage coil (Varian
NMR Systems, Palo Alto, CA, USA) with 108/63 mm diameter sizes.
DTI data were obtained using the standard spin-echo multi-slice
sequence with in-house modifications that store all of the relevant
parameters, including the timing and amplitudes of all of the
crusher gradients. The images were 128 � 128 pixels with a field
of view 64 � 64 mm2 and 0.5 mm slice thickness. The repetition
time TR = 2 s, echo time TE = 35 ms, diffusion pulse separation
D = 18 ms, diffusion pulse duration d = 6 ms were used.

Center-symmetric diffusion gradient schemes with 12 diffusion
gradient vectors were used to obtain data. The gradient schemes
Table 1
Diffusion Gradient Schemes.

cond6 cond�

0.755 0.26 0.602 1 0 0
�0.479 0.711 0.515 0 1 0
�0.394 �0.63 0.669 0 0 1
�0.616 0.262 0.743 0.707 0.707 0

0.558 �0.741 0.375 0 0.707 0.707
�0.954 �0.067 0.292 0.707 0 0.707

jones6 mutm

1 0 0 0.851 0.526 0
0.446 0.895 0 0.851 �0.526 0
0.447 0.275 0.851 0 0.526 0.851
0.448 �0.723 �0.525 0 �0.851 �0.526
0.447 �0.724 0.526 �0.526 0 0.851
�0.449 �0.277 0.85 0.526 0 0.851
were constructed by appending to the 6 vector gradient schemes
listed in [24] their central symmetric part: Tetrahedral (geometri-
cally, the scheme is build on the four tetrahedral vectors of [32] by
adding two more elements and is different from the scheme pre-
sented in [32]), Cond6, Jones noniso (without the last vector) re-
named as Cond* because it yields to a Vg with a good condition
number, Jones (N = 6), Muthupallai (which is equal to Icosahedron
(ICOSA6) scheme from [25]), Downhill Simplex Minimization
(DSM), Dual Gradient. Also a modified version of the Muthupallai
scheme, denoted by MUTM is included in the experiments. For
convenience, the gradient schemes are also provided in Table 1
with the modified entries of MUTM in bold. A maximum diffusion
gradient strength of gdiff = 12 gauss/cm was used. With the boxcar
approximation, at maximum diffusion gradient the value of the
scalar coefficient is c2btg2

diff ¼ 593:61 s=mm2:
6.2. Analysis of the experimental results

In-house Mathematica� (Wolfram Research, Champaign, IL
USA) code was used to compute components of V, as described in
Section 3, using the parameter values written to the hard disk by
the pulse sequence. Integrals were computed using trapezoidal
shapes rather than rectangular ones. The calculations included all
of the crusher gradients. In-house Matlab� (Mathworks, Natick,
MA USA) programs were utilized for the estimation of d at each
pixel and for the graphical representation and maps of related re-
sults. Standard Matlab� Image Processing Toolbox� routines, Sobel
edge detection and morphological reconstruction were used to de-
tect the signal region of the phantom in non-diffusion-weighted
images for each gradient scheme. The edges were removed to ob-
tain a region free of susceptibility artifacts and the intersection
of all regions was taken to obtain the circular area with 1944
pixels.

Among several estimation methods including weighted and
non-weighted least squares for Eq. (14), total fitting [31] and non-
linear estimation (constrained and unconstrained) for Eq. (10),
non-weighted least squares is chosen because of its speed and
simplicity.

Eight standard diffusion gradient schemes listed in Section 6.1
were used for measurements. In the computation of VC and VI the
phase-encoding gradient value of 0 was selected based on the
observations from Fig. 4 that the eigenvectors show a bias towards
the orientation of the phase-encoding gradient. The contrast is vis-
ible on the first column of Fig. 4 where upper and lower limits of
phase-encoding gradient values are used. It should be clear that
this choice does not resolve the existing phase-encoding value
ambiguity.
dsm dualgr

0.91 0.416 0 0.707 0.707 0
0 0.91 0.416 0.707 0 0.707
0.416 0 0.91 0 0.707 0.707
0.91 �0.416 0 0.707 �0.707 0
0 0.91 �0.416 0.707 0 �0.707
�0.416 0 0.91 0 0.707 �0.707

muthup tetra

0.851 0.526 0 0.577 0.577 0.577
0 0.851 0.526 �0.577 �0.577 0.577
0.526 0 0.851 0.577 �0.577 �0.577
0.851 �0.526 0 �0.577 0.577 �0.577
0 0.851 �0.526 0.707 0.707 0
�0.526 0 0.851 0.707 0 0.707



Fig. 4. Polar histogram of the eigenvector corresponding to the largest eigenvalue. The distance of each point from the origin is the number of eigenvectors with their slice
plane component pointing in the direction of that point. Under perfect conditions an isotropic sample would result in a circle representing a uniform distribution. The vertical
axis is the phase-encode direction. The eigenvectors align according to the phase-encode gradient value used in the estimation equations. This is demonstrated with contrast
on the left column: the histograms of the eigenvectors originating from using the most negative (top left corner) and most positive of the phase-encode gradient strengths are
‘orthogonal’. The choice of zero strength (top right corner) creates a histogram aligned in between the ones of the left column. In the case the imaging gradients are excluded
from the calculations, general orientation is horizontal.

Table 2
Summary of analysis results.

cond6 cond� dsm dualgr mutm jones6 muthup tetra

FA VDC 0.199 ± 0.0317 0.128 ± 0.0287 0.094 ± 0.0191 0.162 ± 0.0264 0.574 ± 0.0476 0.112 ± 0.0206 0.112 ± 0.0229 !–!
VD 0.0799 ± 0.0386 0.0639 ± 0.023 0.0506 ± 0.0166 0.0526 ± 0.0189 0.101 ± 0.0584 0.0494 ± 0.0163 0.0502 ± 0.0169 0.111 ± 0.0542

�k1 VDC 2.51 ± 0.114 2.12 ± 0.0584 2.04 ± 0.0524 2.08 ± 0.0674 3.84 ± 0.269 1.99 ± 0.053 1.99 ± 0.0506 3.19 ± 0.113
VD 2.26 ± 0.0928 2.11 ± 0.0677 2.02 ± 0.0473 2 ± 0.0546 2.06 ± 0.132 1.96 ± 0.0511 1.96 ± 0.0482 2.07 ± 0.11

�k2 VDC 2.18 ± 0.108 1.95 ± 0.0731 1.92 ± 0.0483 1.97 ± 0.0672 1.66 ± 0.0556 1.88 ± 0.0502 1.88 ± 0.0487 2.99 ± 0.117
VD 2.1 ± 0.0554 1.98 ± 0.0567 1.93 ± 0.0417 1.9 ± 0.0506 1.88 ± 0.0477 1.87 ± 0.0447 1.86 ± 0.0409 1.87 ± 0.0831

�k3 VDC 1.67 ± 0.0611 1.64 ± 0.0799 1.69 ± 0.0493 1.51 ± 0.0621 1.11 ± 0.0855 1.6 ± 0.0563 1.6 ± 0.0578 �0.252 ± 0.13
VD 1.93 ± 0.104 1.86 ± 0.0669 1.83 ± 0.0463 1.8 ± 0.0575 1.69 ± 0.15 1.78 ± 0.0462 1.78 ± 0.0448 1.67 ± 0.108
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7. Analysis results

The analysis was achieved by investigating the variation of dif-
ferent DTI quantities over the uniform sample. The calculations
were carried out using two different coefficient matrices: VDC (all
gradients) of Eq. (32) and VD (diffusion only, equivalent to NoCroT
since center-symmetric gradients1 were used) of Eq. (37). The re-
1 As the minimum number of six gradient pairs were used, it was possible to solve
Eq. (34) via matrix inversion, which naturally resulted in exactly the same numerical
values of the least squares solution of Eq. (37).
sults are presented in respective rows of the Table 2 as mean ± stan-
dard deviation. Exclamation points indicate the presence of negative
eigenvalues in the Tetrahedron diffusion gradient scheme for ‘all
gradients’.

The first row group shows the mean of the pixel fractional
anisotropy index [33], FA, from the signal region. The fractional
anisotropy is a function of the pixel eigenvalues (k1 P k2 P k3):

pFA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2Þ2 þ ðk2 � k3Þ2 þ ðk3 � k1Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k2

1 þ k2
2 þ k2

3

	 
q : ð38Þ



Table 3
The model matching error.

cond6 cond� dsm dualgr mutm jones6 muthup tetra

�v VDC 529.7 ± 63.86 489.5 ± 52.99 495.4 ± 45.64 481.7 ± 38.59 445.1 ± 32.79 489.9 ± 31.95 483.6 ± 31.43 334.9 ± 25.92
VD 262.8 ± 36.32 293.4 ± 35.87 272.7 ± 30.68 273.4 ± 28.94 276.7 ± 27.13 272.7 ± 25.37 269.4 ± 26.9 304.9 ± 27.82
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In the experimental results, FA is the lowest when all of the imaging
gradients are neglected from the calculations (row 2, Table 2).
Quantitatively, the decrease varies between from 46.77% (DSM
scheme) up to 83.31% (Mutm scheme). Fig. 5 portrays that the in-
crease in the fractional anisotropy for VDC is mainly due to the sep-
aration of the smallest eigenvalue from the other two.

The standard deviation of the fractional anisotropy does not
change drastically between the methods. The difference of the pre-
cision values between the methods is not significant enough to
draw conclusions.

Since the only known fact is the isotropic nature of the sample,
the accuracy criterion for the experiments is the closeness of the
eigenvalues. Theoretically, in an isotropic sample the fractional
anisotropy is zero because of all of the eigenvalues are equal in
the numerator of Eq. (38). The eigenvalues of the estimation using
all of the gradients are more dispersed than the ones of the other
two methods, which is also visible in Fig. 5. The estimation with
VDC indicates a less isotropic sample and therefore is less accurate.

In addition, the Tetrahedron scheme exhibits negative eigen-
values (see Section 2.1) using VDC resulting in a ratio of number
of pixels with negative eigenvalues to total number of pixels
0.998 (nroi = 1944). This indicates that the inclusion of imaging gra-
dients can perturb significantly the solutions depending on the
gradient scheme sensitivity.

The precision of the eigenvalues does not significantly change
between the methods.

The decisive criterion for the performance of any model match-
ing method is the error between the measurements bSi and the
model. For DTI, �v is the mean of the pixel residual error, kvk:

kvk2
2 ¼

1
m

Xm

i¼1

ðSðv idÞ � bSiÞ2: ð39Þ

In the case of nonlinear estimation [18], the solution for d is found
by minimizing kvk2

2; equivalent to using Eq. (1). In the case of Eq.
(13), d estimated by the pseudoinverse matrix and the least squares
fitting error is not the model matching error of Eq. (39).
Fig. 5. The mean of pixel eigenvalues obtained with different methods: VD + VC (‘all
gradients’) and VD (‘diffusion gradients only’). The eigenvalues obtained with
VD + VC show a larger dispersion meaning a higher anisotropy compared to the ones
obtained with VD. The scheme Tetrahedron exhibit negative eigenvalues for VDC and
they are not shown. The eigenvalues for Mutm scheme obtained by ‘all gradients’,
3.84 ± 0.269,1.11 ± 0.0855, are also omitted for clarity of presentation.
The numerical results for the model matching error are pre-
sented in Table 3. Notably, there is an increase in the model match-
ing error when the imaging gradients are included in the
calculations. This is inline with the observation that the FA in-
creases for the same method: larger residual error, less accurate
results.

8. Conclusion and future directions

In the light of the discussion of Section 4 about the severe the-
oretical and numerical inadequacies for incorporating the imaging
gradients to obtain a complete model, and of the experimental re-
sults presented in Section 7, the following is concluded:

The decrease of the accuracy for the inclusion of all of the gra-
dients validates the existence of modeling incongruities in
Diffusion Tensor Imaging model.

Although there are quantitative variations between the results
obtained from different diffusion gradient schemes, qualitatively
the conclusion holds regardless of the scheme. Moreover, the usage
of nonlinear estimation methods instead of least squares estima-
tion does not change the conclusion [18].

In an effort to minimize the effect of the imaging gradients, the
NoCroT method devised by the assistance of the linear algebraic
framework avoids the cross-terms in the calculations. The theoret-
ical advantage of the center-symmetric gradient schemes is the
elimination of the total impact of imaging gradients on a broader
scale. The center-symmetric gradients make NoCroT method math-
ematically equivalent to estimation using the equations that in-
volve only the diffusion gradients, in other words just the
coefficient matrix VD. Without the center-symmetry, there is no
justification for neglecting the cross-terms in a complete model.

An important consequence of the introduction of the imaging
gradients into the picture is the creation of the direction awareness
for the gradient schemes or equivalently for the sample orientation
with respect to the imaging coordinate frame. Concisely speaking,
without the involvement of the imaging gradients in the model,
the rotation of the gradient scheme or the rotation of the sample
should not change the experimental results. Each imaging gradient
affects the signal according to the component of the spin motion
along its axis. Such effect could result to misleading outcomes for
the estimation of the eigenvalues and eigenvectors, and conse-
quently for the fiber tracking algorithms. Therefore, it is important
to design robust and sample-independent gradient schemes that
would be minimally affected by the imaging gradients. These
investigations are carried out in [14] by developing further the lin-
ear algebraic setup into a normed vector space structure that per-
mits devising appropriate optimization problems.
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Appendix A. The components of V, diffusion gradient schemes
and the numerical values of the analysis results

The detailed definition of the different coefficient matrices cor-
responding respectively to diffusion, imaging and cross-term com-
ponents is:

V ¼
Z t

0

h2
x ðG1DÞ � � � 2hxðG1DÞhzðG1DÞ

..

. ..
.

h2
x ðGmDÞ � � � 2hxðGmDÞhzðGmDÞ

2664
3775df

þ
Z t

0

h2
x ðGIÞ � � � 2hxðGIÞhzðGIÞ

..

. ..
.

h2
x ðGIÞ � � � 2hxðGIÞhzðGIÞ

2664
3775df

þ 2
Z t

0

hxðG1DÞhxðGIÞ � � � hxðG1DÞhzðGIÞ þ hxðGIÞhzðG1DÞ
..
. ..

.

hxðGmDÞhxðGIÞ � � � hxðGmDÞhzðGIÞ þ hxðGIÞhzðGmDÞ

2664
3775df

¼ VD þ VI þ VC : ðA:1Þ
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